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Abstract. Corrections to the asymptotic correlation function in a Heisenberg spin-1
2

antiferromagnetic spin chain are known to vanish slowly (logarithmically) as a function of the
distancer or the chain sizeL. This leads to significant differences with numerical results.
We calculate the sub-leading logarithmic corrections to the finite-size correlation function, using
renormalization group improved perturbation theory, and compare the result with numerical data.

The correlation function in the spin-1
2 Heisenberg antiferromagnetic chain is difficult to

determine from the Bethe ansatz, so other methods are used for this purpose, such as
bosonization and conformal field theory (CFT). These methods work very well as a tool to
determine long-distance asymptotics. Numerical work [1–5], however, often questioned this
approach. This has been explained by the fact that finite-size corrections vanish slowly at long
distances, as 1/ lnL, and 1/ ln(r), whereL is the system size (periodic boundary conditions
assumed) andr the separation of the two points, due to the presence of a marginally irrelevant
operator [6,7].

Following the methods and notation of [6,8],the continuum limit of the Heisenberg model
can be written inSU(2)-symmetric form using non-Abelian bosonization [6]. The action for
theSU(2)-symmetric matrix fieldgαβ includes the Wess–Zumino term with coefficientk = 1.
This theory is equivalent to a free boson defined on a circle. The low-energy Hamiltonian in
the continuum approximation is given by:

H = H0 − 8π2/
√

3λJL · JR (1)

whereH0 is the Hamiltonian density for a free boson,JL,R are left and rightSU(2) currents:

JL ≡ −i

4
√
π

tr[g†∂−gσ] JR ≡ i

4
√
π

tr[∂+gg
†σ]. (2)

(Here we use the notationλ for the marginal coupling constant rather thang as in [8].)
We now turn to the discussion of the asymptotic correlation function. The spin operators

can be written in non-abelian bosonization notation as:

Sj = (JL + JR) + const i(−1)j tr[gσ]. (3)

Thus the correlation function has uniform and staggered terms,

G(r) = 〈Sz0Szr 〉 → Gu(r) + (−1)rGs(r). (4)
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868 V Barzykin and I Affleck

Both terms vary slowly on the scale of the lattice spacing, and correspond to different Green
functions in the continuum theory. In this paper we only consider the staggered termGs(r),

Gs(r) ∝ 〈tr(σzg)(r) tr(σzg)(0)〉. (5)

The staggered correlation function for a finite chain obeys the following renormalization
group (RG) equations [6]:

[∂/∂ ln r + β(λ)∂/∂λ + 2γ (λ)]Gs(r, r/L, λ) = 0 (6)

whereβ(λ) is the beta function for the coupling constantλ in equation (1):
dλ

d ln r
= β(λ) (7)

andγ (λ) is the anomalous dimension. In equation (6) ther-derivative acts only on the first
argument ofGs ; r/L is held fixed. Equation (6) expresses the fact that a rescaling of both
lengthsL and r by a common factor can be compensated for by a change in the effective
coupling constant,λ(r) and a rescaling of the correlation function. The solution of equation (6)
has the form:

Gs(r, λ0) = exp

(
− 2

∫ r

r0

d ln r ′γ [λ(r ′)]
)
F [r/L, λ(r)] (8)

whereλ0 ≡ λ(r0) is the ‘bare’ coupling—a coupling at the ultraviolet cut-off scaler0,
F [r/L, λ(r)] is an arbitrary function of the effective coupling constant at scaler, λ(r).

The coupling constant flows to zero as the distancer is increased, and one can use
perturbative expressions forγ (λ) and β(λ) to determine long-distance properties. The
universal terms in the perturbative expansion for theβ-function [9] and the anomalous
dimension [6,7] are known,

β(λ) = −(4π/
√

3)λ2 − ( 1
2)(4π/

√
3)2λ3 (9)

γ (λ) = 1
2 − (π/

√
3)λ. (10)

Thus the effective coupling is given by:
1

λ(r)
− 1

λ0
= (4π/

√
3){ln(r/r0) + ( 1

2) ln[ln(r/r0)]} + O(1). (11)

Rewriting the integral in equation (8) using equation (9), one easily finds [8]:∫ λ(r)

λ0

[γ (λ)/β(λ)] dλ = ( 1
2) ln(r/r0) + ( 1

4) ln[λ(r)/λ0] + · · · . (12)

Thus Green’s function has the expansion:

Gs(r, L, λ) = 1

r

√
λ0

λ(r)
e
∑∞

n=1 an[λ(r)
n−λn0]

∞∑
m=0

Fm(r/L)λ(r)
m. (13)

The coefficients,an and the functionsFm(r/L) can be determined by doing perturbation
theory in the bare coupling constant and then recasting the resulting expression in terms of the
renormalized coupling constant in the form of equation (13). This automatically incorporates,
at low orders, the leading log divergences to all orders in perturbation theory. This method is
standard in quantum chromodynamics calculations and is known as ‘RG improved perturbation
theory’.

The zeroth-order term of this sum,F0(r/L), is given by the free theory—the conformally
invariant WZW model on a circle of lengthL, and can be obtained by conformal
transformation. Sinceg has scaling dimension12, for an infinite system:

〈tr[g(r)σz(r)] tr[g(0)σz]〉 = 1

r
. (14)
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(Here we have chosen a convenient normalization for the operatorg.) For a finite system with
periodic boundary conditions, we make a conformal transformation from the infinite plane to
the cylinder, obtaining:

〈tr[g(r)σz] tr[g(0)σz]〉 = π

L sin(πr/L)
. (15)

Thus we see that:

F0(r/L) ∝ (πr/L)

sin(πr/L)
. (16)

Using equation (11), we thus obtain the asymptotic correlation function:

Gs(r, L)→ A

(L/π) sin(πr/L)
{ln(r/r0) + ( 1

2) ln[ln(r/r0)]}. (17)

Essentially this result was obtained in [8]. For related work on the correlation function for the
infinite length spin chain see [10].

The new result which we derive here is the next order correction,F1(r/L), in equation (13).
The first-order perturbation theory result, using the Hamiltonian of equation (1), gives:

δ〈tr[g(r)σz(r)] tr[g(0)σz]〉
= 8π2λ0√

3

∫
dτ dx T 〈tr[g(r, 0)σz] tr[g(0, 0)σz]JL(x, τ ) · JR(x, τ )〉L (18)

whereT denotes time-ordering. This correlation function can be evaluated using standard
CFT techniques. We first obtain its value for an infinite system, then obtain the result for finite
L by conformal transformation. Using the general result for three-point functions of primary
operators we obtain:

T 〈tr[g(r, 0)σz] tr[g(0, 0)σz]JL(x, τ ) · JR(x, τ )〉
∝ r

(x + iτ)(x − r + iτ)(x − iτ)(x − r − iτ)
. (19)

The normalization constant can be fixed from the operator product expansion (OPE):

JL(x, τ ) · JR(x, τ ) tr[g(0)σz] →− tr[g(0)σz]

16π2(τ 2 + x2)
(20)

and the normalization of the zeroth-order Green function in equation (14). This gives:

T 〈tr[g(r, 0)σz] tr[g(0, 0)σz]JL(x, τ ) · JR(x, τ )〉
= − r

16π2(x + iτ)(x − r + iτ)(x − iτ)(x − r − iτ)
. (21)

The correlation function on the cylinder can be obtained by conformal transformation:

T 〈tr[g(r, 0)σz] tr[g(0, 0)σz]JL(x, τ ) · JR(x, τ )〉L
= − ((π/L)3 sin(πr/L))(16π2 sin[π(x + iτ)/L] sin[π(x − r + iτ)/L]

× sin[π(x − iτ)/L] sin[π(x − r − iτ)/L])−1. (22)

Thus the first-order correction is given by:

δ〈tr[g(r)σz(r)] tr[g(0)σz] >L=
(−λ0

2
√

3

)∫ ∞
−∞

dτ
∫ L

0
dx

= ((π/L)3 sin(πr/L))(16π2 sin[π(x + iτ)/L] sin[π(x − r + iτ)/L]

× sin[π(x − iτ)/L] sin[π(x − r − iτ)/L])−1. (23)
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This integral has a logarithmic ultraviolet divergence atτ → 0, andx → 0 or r. This can
be cut off by restricting the integral to|x|2 + τ 2 > r2

0 and|x − r|2 + τ 2 > r2
0. The resulting

logarithmic dependence onr0 is exactly what is needed in order for the resulting expression to
have the form of equation (13), since:√

λ0

λ(r)
≈ 1 +

2πλ0√
3

ln(r/r0). (24)

Remarkably, the integrals can be done exactly. Thex-integral can conveniently be done first
using contour methods. This gives:

δ〈tr[g(r)σz(r)] tr[g(0)σz]〉
= iπ2λ0

2
√

3L

∫ ∞
−∞

du

[
1

sinhu sinh(u + iπr/L)
− complex conjugate

]
. (25)

(Hereu ≡ 2πτ/L and the integral is cut off at|u| > r0/L.) This indefinite integral may be
done exactly by changing variables to tanhu, giving:

〈tr[g(r)σz(r)] tr[g(0)σz]〉
= 1

(L/π) sin[πr/L]

{
1 +

2πλ0√
3
{ln[(L/r0) sin(πr/L)] + constant}

}
. (26)

This is the result of perturbation theory to first order in the bare coupling constantλ0. The next
step is to ‘RG improve’ this result by matching it to the expression in equation (13). Expanding
this expression to first order in the bare coupling constant, using equation (11) gives:

Gs(r) ∝ 1

(L/π) sin[πr/L]
[1 + λ0(2π/

√
3) ln(r/r0)][1 + λ0F1(r/L)/F0(r/L)]. (27)

Comparing equation (26) and (27) we see that:

F1(r/L)/F0(r/L) = 2π√
3

ln

[
L

r
sin
(πr
L

)]
+ constant. (28)

Thus our RG improved expression for the correlation function is:

Gs(r, L, λ0) ∝ 1

(L/π) sin[πr/L]

√
λ0

λ(r)

{
1 +λ(r)

{
2π√

3
ln

[
L

r
sin
(πr
L

)]
+ constant

}}
.

(29)

The advantage of this RG improved expression is that we may now go to arbitarily large
r, a limit in which the large logarithms, ln(r/r0) invalidate finite-order perturbation theory
and infinite resummations of most divergent diagrams are neccessary. This is automatically
taken care of by equation (29) together with the expression forλ(r) in equation (11). In this
asymptotic limit we may use:

λ(r) ≈
√

3

4π ln(r/r0)
(30)

for the factor ofλ(r) inside the curly brackets in equation (29). This gives:

Gs(r)→ A

(L/π) sin[πr/L]
[ln(Cr/r0) + ( 1

2) ln[ln(r/r0)]]
1/2

×
{

1 +
1

2 ln(r/r0)

{
ln

[
L

r
sin
(πr
L

)]
+ constant

}}
(31)

where:

C ≈ e
√

3/4πλ0+O(1). (32)
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We now see that the ‘constant’ term can be adsorbed, to lowest order in 1/ ln(r/r0), into a
rescaling ofC (i.e. a shift ofλ0) so we henceforth drop it. This is all the information that
can be extracted from the RG to this order. Two non-universal free parameters remain: the
overall amplitude,Aand the bare couplingλ0, appearing as the constantC in equation (31). The
amplitudeAwas recently determined, from Bethe ansatz results [10] for the spin-1

2 Heisenberg
model, to be [8]A = (2π)−3/2. The bare couplingλ0 (for some conveniently chosen value
of r0) is not known exactly for the spin-1

2 Heisenberg model. It can be determined by fitting
numerical results. Since the same bare coupling constant also appears in various other finite
size corrections, including the finite-size spectrum [6] various consistency checks could be
made. However, this requires further calculations to ensure consistency of the cut-off schemes
in various calculations and we do not attempt it here.

Note that if we chosez ≡ (L/π) sin(πr/L) instead ofr as the length scale in equation (6),
we would find, to this order, that the finite-size correlation function at distancer is given by
an infinite-chain correlation function atz:

Gs(r, r/L) = Gs(z, 0) = 1

z(2π)3/2
{ln(Cz/r0) + ( 1

2) ln[ln(z/r0)]}1/2. (33)

However, this fact does not necessarily hold for higher-order RG. As follows from our result
equation (31), the finite-size correction to the asymptotic correlation function vanishes asr2/L2

as one approaches the infinite-chain limit,r/L → 0. The expansion in 1/ ln(r/r0) remains,
but the functionsFm(r/L) (see equation (13)) approach constants in this limit. (We have only
checked this forF0(r/L) andF1(r/L)).

It is interesting to compare our result equation (31) with phenomenological expressions
used to fit numerical data. Koma and Mizukoshi [5] used the scaling function of the form:

Gs(r, L) = A{ln[(L/πr0) sin(πr/L)]}1/2
(L/π) sin(πr/L)

(34)

with A = (2π)−3/2 ' 0.0635, close to the exact answer. This form is equivalent to
equation (33) with the slow log–log term replaced by a constant. The best fit was obtained for
A ' 0.065, close to the exact answer. Kuboet al [1] and Hallberget al [4] defined a scaling
functionf (r/L),

Gs(r, L) = Gs(r,∞)f (r/L) (35)

and adopted a phenomenological expression,

f (x) ∝ [1 +A sinh2(Bx)]2η. (36)

Note that equation (35) does not agree with our RG analysis. They found the best fit for
A = 0.288 22,B = 1.673, 2η = 1.805. As it has been noted by one of us, the form is
remarkably (within 0.05%) close to the CFT prediction for the generalxxz model, since

1 + 0.288 22 sinh2(1.673x) '
[

πx

sin(πx)

]1/2

. (37)

Further, forη close to 1 we can replace the phenomenological formula equation (36) by an
equivalent,

[1 + 0.288 22 sinh2(1.673x)]2η '
[

πx

sin(πx)

]{
1 + (η − 1) ln

[
πx

sin(πx)

]}
. (38)

The scaling functionf (x) is similar toF(λ(r), x) defined in equation (31). We find thatη
depends onr,

η(r) ' 1− 1

2 ln(cr)
. (39)



872 V Barzykin and I Affleck

Figure 1. Scaled DMRG data for spin correlation function compared with one-loop theoretical
expression (solid curve) and free boson result (dashed curve).

Finally, let us compare our theoretical expression equation (31) with DMRG data of [4].
We have found that the log–log term, which is higher order, is almost constant, and does not
influence the comparison. Since adding a log–log term introduces one more free parameter, we
decided to drop it. To obtain data collapse forGs(r, L) in a one-loop RG we use equation (33),
with the log–log term dropped and useC as a free parameter. We compare this with a zero-order
non-interacting result,

Gfree(z) = const
1

z
. (40)

The result is shown in figure 1. Both expressions use one free parameter. The better fit
produced by our one-loop expression is obvious.

Alternatively, we can use the result equation (31), withA = 1/(2π)3/2, the log–log term
dropped, and C taken as a free parameter. (These two expressions are the same to the order
that we have calculated in 1/ ln r.) The comparison of this formula with numerical data is
shown in figure 2. For comparison we also show the result without the correction that we have
calculated,

Gs(r) = A[ln(Cr/r0)]1/2

(L/π) sin[πr/L]
. (41)

It is instructive to find the value ofA from the numerical data to compare it with exact
value. Using equation (31) withA andC as free parameters to fit the numerical data, we find
A = 0.063 6427, which differs only 0.2% from the exact answer. This is much better than
what we would have found without the correction calculated in this paper,A = 0.057 8896,
which is off by some 9%.

Finally, we can extract from the data the behaviour of the correlation function atL = ∞,
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Figure 2. Numerical data for the spin–spin correlation functionGs(r, L) from [4] versusr/L for
r = 7− 27. Solid curves—our one-loop result (with one parameter—c), dashed curve—the result
without our correction (also with one parameter—c).

Figure 3. Spin–spin correlator multiplied byr, rGs(r,∞), versusr extracted from the DMRG
data of [4]. Solid curve—the one-loop result.

using equation (13) and dividing it by

F0(r/L) + F1(r/L)λ(r) =
{

1 +
1

2 ln(cr)
ln

[
L

πr
sin
(πr
L

)]} πr

L sin[πr/L]
. (42)
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The result is given by

Gs(r,∞) =
√

ln(cr)

(2π)3/2r
(43)

with the same constantc. This way of extractingL = ∞ behaviour from finite-size data
is different from the phenomenological scaling expression that Hallberget al used in [4],
Gs(r, L) = Gs(r,∞)f (r/L). The result is shown in figure 3.

In conclusion, we have shown that the bosonization approach provides an accurate
description of the spin correlation function in a finite spin-1

2 Heisenberg spin chain. Our
theoretical result equation (31) compares favourably with numerical data at long length scales.
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